MARKET SHARE AND PRICE SETTING BEHAVIOR
FOR PRIVATE LABEL AND BRANDED FOOD
PRODUCTS: AN EMPIRICAL ANALYSIS

Ronald W Cotterill
Ravi Dhar
William P Putsis, Jr.

Centre for Marketing Working Paper
No. 97-301
April 1997

Ronald Cotterill is Professor and Director of the Food Management Policy Center at the University of Connecticut. Ravi Dhar is Associate Professor of Marketing at the Yale School of Management. William Putsis is Associate Professor of Marketing at London Business School. The authors would like to thank Lawrence Haller and Andrew Franklin at the Food Marketing Policy Center at the University of Connecticut for computational assistance. Comments from seminar participants at Boston University, Columbia University, London Business School, MIT, University of Toronto, Washington University and Yale University improved earlier versions substantially. The authors also thank Subrata Sen for helpful comments on an earlier draft. Support from the USDA CSREES Special Research Grant No. 95-34178-1315 at the University of Connecticut and the Yale School of Management Faculty Research Fund is gratefully acknowledged.

London Business School, Regent's Park, London NW1 4SA, U.K.
Tel: +44 (0)171 262-5050 Fax: +44 (0)171 724-1145
BPUTSIS@lbs.ac.uk http://www.lbs.ac.uk

Copyright © London Business School 1997
Abstract

In this paper, we develop a framework for estimating market share and price reaction equations simultaneously in an attempt to understand the nature of competitive interaction in the market for private label and branded grocery products. Specifically, we employ a LA/AIDS demand framework and specify the price reaction equations derived under the LA/AIDS demand specification. This enables us to consistently estimate share-price relationships, accounting for demand-side and competitive reactions simultaneously.

Empirical findings support our premise that consumer response to price and promotion decisions (demand) and the factors influencing firm pricing behavior (supply) jointly determine observed market prices and market shares. More specifically, we find a positive relationship between share and price on the supply side reflecting market power influences and a traditional negative relationship between share and price on the demand side. Finally, when oligopolistic interdependence is measured by specifying brand share, brand Herfindahl, and local retail market structure measures, the results indicate that branded price is higher in markets dominated by national brands.

Keywords: Private Labels; Pricing; Competitive Strategy; Promotion
1. Introduction

The nature of competition between manufacturer "branded" products and retailer "private labels" is a primary concern of marketing managers in the retail food industry. Understanding the different factors that determine the competitive interaction between national brands and private labels has taken on greater urgency over the past decade. In this vein, in the first half of 1996, private label sales in food stores increased 6.3% versus manufacturer brand growth of just 1.3%, while retailer-controlled brands have outpaced manufacturer brands in 12 of the most recent 14 quarters (Progressive Grocer, November 1996). Alternatively, private label sales have declined in some categories as national brands have effectively responded to private label competition (BrandWeek, 5/29/95, New York Times 6/11/96). Yet, despite the increasingly intense competitive interaction between private labels and national brands, little research has been conducted on this issue.

Previous research in marketing has focused on variation in the market share of private label products across categories (Sethuraman 1992; Sethuraman and Mittelstaedt 1992; Hoch and Banerji 1993; Narasimhan and Wilcox 1996). A number of factors have been identified in the literature to explain the variation in private label market share across different product categories. Sethuraman (1992), for example, identifies twelve marketplace factors as potential determinants of private label success. These factors include retail sales volume, average retail price, price differential between the private label and national brands, retail private label price promotion and brand promotion.

A consistent yet surprising finding across cross-category studies is that there is a negative relationship between national brand-store brand price differential and store brand market share (McMaster 1987; Raju and Dhar 1991; Sethuraman 1992). Thus, the larger the price differential between national brands and private labels, the lower the private label share. Analytically, Raju, Sethuraman and Dhar (1995a) demonstrate that cross-category analysis may be inappropriate for assessing the true relationship between private label share and price differential, suggesting that analysis of within category data is more appropriate. We will argue shortly that by incorporating
price reactions, the “true” underlying relationship between share and price can be uncovered even in cross-section.

While the focus in marketing studies has primarily been on market share relationships, recent work in the economics and industrial organization literature has focused on the determinants of firm price setting behavior. In particular, researchers have suggested an important link between market price and product differentiation, industry concentration, the use of market power, and market share (Schmalensee 1978; Deneckere and Davidson 1985; Weiss 1989). Conceptually, the nature of manufacturer-retailer competition in any given market will affect both the within channel power and the incentives for stocking and promoting store brands. The price setting behavior of both manufacturers and retailers will depend upon cost and demand considerations, as well as the nature of strategic interaction between competitors, including the potential use of market power by manufacturers and/or retailers. It is well established that factors that increase market power (such as increased concentration and market share) result in higher market prices (Weiss 1989). More recently, a number of studies have addressed competitive interaction in detail. Some of these studies specify specific forms of competitive interaction and use non-nested hypothesis tests to ascertain the type of competition observed (examples of this “menu” approach include Gasmii, Laffont and Vuong 1992, and Kadiyali, Vilcassim and Chintagunta 1996a), while others estimate competitive interaction directly through the use of conjectural variations (e.g., Putis and Dhar 1997, and Kadiyali, Vilcassim and Chintagunta 1996b). Connor and Peterson (1992) and Slade (1995) have empirically addressed private label products, but neither has focused on the simultaneous determination of price and share.¹

We maintain that developing a complete understanding of the nature of the competitive interaction between national brands and private labels requires an understanding of the determinants of both market share and strategic pricing decisions by firms. Consumer response to price and promotion decisions (demand) and the factors influencing firm pricing behavior (supply) jointly determine observed market prices and market shares. There are three principal reasons why addressing both share and price simultaneously is important for understanding the

¹ Alternatively, other studies such as Kadiyali, Vilcassim and Chintagunta (1996b) estimate demand and supply-side equations simultaneously, but do not address private label-national brand interaction.
competitive interaction between national brands and private labels:

1) Conceptually, share and price interact on both the demand and the supply side. As an example, recent price cuts in the ready-to-eat cereal category by Post and Nabisco resulted in a consumer response that increased its market share from about 16 percent to over 20 percent, while decreasing private label shares. In response, Kellogg's announced a 20 percent across the board price cut due to declining shares of its major brands (New York Times, 6/11/96). General Mills and Quaker Oats also reduced prices. Clearly share responds to price, while price setting is influenced by changes in share. Examining either share or price alone would provide an incomplete picture of the interaction between brands in this category.

2) It is well known that OLS applied equation by equation to jointly endogenous variables (e.g., price as a function of share and share a function of price as explained above) will produce inconsistent parameter estimates (see, e.g., Intriligator 1978 or Judge, 1985). In fact, it is not unusual for OLS to produce incorrect signs for certain parameters (see, e.g., Intriligator 1978). Simultaneous equation approaches to estimation have a long history in marketing (Bass 1969; Schultz 1971; Hanssens, Parsons and Schultz 1990; Neslin 1990).

3) The unexpected negative relationship between private label share and branded-private label price differential (or, equivalently, a positive relationship between own price and share) addressed in Raju, Sethuraman and Dhar (1995a) is the combination of two separate effects - one resulting in a positive relationship between share and price and the other resulting in a negative relationship. On the one hand, the positive relationship between price and share is an interbrand relationship. Brands with larger market shares have higher prices than smaller share brands due to the market power that results from the higher share (Deneckere and Davidson 1985; Wills 1985). This is a supply side relationship that reflects the nature of interbrand competition and the use of market power. Alternatively, over time and across markets, there is a negative intrabrand share-price relationship reflecting a traditional demand response - for any brand, an increase in its price lowers its share due to a decrease in demand. In short, there are two separate (and opposite) relationships between share and price - higher
share affords a firm a higher degree of market power, enabling it to raise prices, while a higher price lowers demand for the product, thereby lowering its share. Thus, in order to properly understand the relationship between share and price, both interbrand supply and intrabrand demand relationships must be estimated in order to disentangle the two effects. Indeed, the empirical results below support our assertion that the supply side relationship is positive, while the demand side relationship is negative.

In the next section, we describe the theoretical model that guides the empirical specification and the selection of variables. We employ a LA/AIDS demand specification (Deaton and Muellbauer 1980b), which has a number of nice properties, including consistent aggregation. Using the LA/AIDS demand specification, we are then able to specify price reaction equations derived under LA/AIDS demands. This enables us to properly estimate the share-price relationship, accounting for demand-side and competitive reactions simultaneously. In the empirical analysis, we estimate a system of market share and price equations simultaneously in order to examine i) the determinants of consumer’s response to firm’s pricing and promotion decisions and ii) the determinants of pricing behavior. Using data for 143 food product categories, we develop a model that captures the variation in private label-national brand share and pricing across categories and markets. The results of the empirical analyses are then discussed in detail, followed by a discussion of the managerial implications.

2. Theoretical Framework

To keep the framework simple, we begin with a category-level model of a duopoly consisting of two firms, one producing a national “branded” product and the other producing a “private label” product. Both products compete in a specific geographic area with price the sole strategic variable.2

2 We have not explicitly focused on channel issues in an attempt to keep the model tractable. Thus, we have made some simplifying assumptions regarding the strategic interaction between manufacturer and retailer. In the framework presented, imagine that the retailer controls the private label retail price, and that the manufacturer controls the national brand net retail price through a variety of measures such as trade promotions and on-pack prices. Thus, the price reaction system developed below is derived from retailer and manufacturer profit maximization in a Bertrand (price) differentiated oligopoly. An equivalent specification would have manufacturers setting price, with the retailer applying a fixed markup rule (Kadiyali, Vlcsassim and Chintagunta 1996b).
Define the following set of variables:

\(P_{ij} = \) the price per unit volume of the national brand in category i and city j.

\(P_{ij}^2 = \) the price per unit volume of the private label in category i and city j.

\(Q_{ij}^1 = \) the quantity of the national brand sold in category i and city j.

\(Q_{ij}^2 = \) the quantity of the private label sold in category i and city j.

\(D_{ij} = \) a vector of demand shift variables for category i and city j.

\(W_{ij}^1 = \) a vector of supply-side cost shift variables for the national brand in category i and city j.

\(W_{ij}^2 = \) a vector of supply-side cost shift variables for the private label in category i and city j.

Define the demand functions for branded and private label products as:

\[
Q_{ij}^1 = Q^1(P_{ij}, P_{ij}^2; D_{ij}) \tag{1}
\]

\[
Q_{ij}^2 = Q^2(P_{ij}, P_{ij}^2; D_{ij}) \tag{2}
\]

The quantity of the national and private label products demanded are function of their prices and, following Hoch, Kim, Montgomery and Rossi (1995), a set of demand shift variables that will include per capita expenditures in category i and city j, family income level in city j (reflecting the overall affluence of the geographic area), the percent of the population that is Hispanic in city j, and median family age in city j. Following standard demand theory (Deaton and Muellbauer 1980a), we hypothesize that own (cross) price is negatively (positively) related to quantity. Similarly, define the cost functions for branded and private label products as:

\[
C^1(Q_{ij}^1, W_{ij}^1) \tag{3}
\]

\[
C^2(Q_{ij}^2, W_{ij}^2) \tag{4}
\]

The total cost of producing \(Q_{ij}^1 \) is a function of \(Q_{ij}^1 \) and a vector of supply side cost shift variables. We will use a vector of cost-shift variables (as in Gasmi, Laffont and Vuong 1992) which will include a measure of package size to capture the hypothesis that smaller package sizes
have higher costs per pound.

In a Bertrand game where price is the strategic variable, the profit maximizing problems for the two firms are:

\[
\text{MAX } \Pi_1 = \left[P_1^i Q_1^i (P_1^i, P_2^i; D_1) - C_1^i (Q_1^i (P_1^i, P_2^i; D_1), W_1^i) \right]
\]
\[
\text{MAX } \Pi_2 = \left[P_2^i Q_2^i (P_1^i, P_2^i; D_1) - C_2^i (Q_2^i (P_1^i, P_2^i; D_1), W_2^i) \right]
\]

The first order conditions for these maximization problems results in the following two equations:

\[
\frac{\partial \Pi_1}{\partial P_1^i} = g(P_1^i, P_2^i, D_1, W_1^i) = 0
\]
\[
\frac{\partial \Pi_2}{\partial P_2^i} = h(P_1^i, P_2^i, D_1, W_2^i) = 0
\]

From the first order condition for national brands, we can solve for the national brand price \(P_1^i \) as a function of the other variables:

\[
P_1^i = R_1(P_2^i, D_1, W_1^i)
\]

Similarly, using the first order condition for private label price, \(P_2^i \), one obtains:

\[
P_2^i = R_2(P_1^i, D_1, W_2^i)
\]

These last two equations are the price reaction equations, giving each firm’s profit maximizing price as a function of the other firm’s price, exogenous demand and cost shift variables. The two products are said to be strategic complements if the reaction function is positive and strategic substitutes if the reaction function has a negative slope (Bulow,
Geanakopolos, and Klemperer 1985; Tirole 1989). We hypothesize that the price reaction curves have positive slopes with regard to the other firms' price (Deneckere and Davidson 1985), as products are often strategic complements in price (Tirole 1989).

This model of national brand-private label interaction has four equations (two demand equations and two price reaction equations) and four endogenous variables (the two quantities and two prices). Since we also have a set of exogenous variables and this system is, in general, identified, and we can use simultaneous equation estimation techniques to estimate parameters and test hypotheses.

Choice of Functional Form

Demand analysis and functional form specification has been well developed in the economics literature (see, e.g., Deaton and Muellbauer 1980a or Phlips 1983). Numerous forms have been proposed that are theoretically superior to a linear specification including the Linear Approximate Almost Ideal Demand System, or LA/AIDS (Deaton and Muellbauer 1980b). The reasons for its superiority include the fact that it is derived from the underlying choice axioms in utility theory, individual behavior can be aggregated to consistently estimate demand parameters from market level data, and that it gives a first-order approximation to any "true" demand system functional form (Deaton and Muellbauer, 1980b).³

The general LA/AIDS functional form for the demand equation is given by equation (11). Given LA/AIDS demands in (11) and each firm's profit maximization (5 and 6), we can substitute the demand equations into the profit maximization and solve for the price reaction equations (9 and 10). This enables us to specify price reaction equations that are consistent with the underlying demand form. These derived price reaction equations are given by equation (12).⁴

³ The aggregation properties are especially important for our purposes. First, we note that the LA/AIDS is PIGLOG in form, which does not require the assumption of parallel linear Engel curves. This implies that we are able to consistently estimate expenditure effects using linearly aggregated data. In addition, under the assumption that prices change proportionately from period to period across retailers, taking the first difference of a LA/AIDS demand equation eliminates any linear response aggregation bias (Christen, Gupta, Porter, Staelin and Wittink 1996). This point will be discussed further in the Discussion section.

⁴ Note that there are four equations in total, two share equations and two price equations. For a detailed derivation, see Cotterill, Franklin and Ma (1996).
where: $S_{ij}^l = \text{the dollar market share of the national brand in category i and city j}$,

$E_{ij} = \text{total per capita expenditure on category i in city j}$, and

$P_{ij} = \text{Stone's price index}^5 = S_{ij}^l \ln P_{ij}^l + S_{ij}^2 \ln P_{ij}^2$.

The ratio of per capita expenditure and Stone's price index is a deflated (real) measure of per capita expenditures. Thus, its coefficient gives an estimate of the impact of changes in expenditures on demand for a given product. Following Green and Alston (1990), an estimate of the national brand’s own price elasticity of demand is:

\[
\eta_{11}^l = -1 + \frac{\alpha_{11}}{S_l} + \alpha_{13}
\]

(13)

Cross-price elasticity (here, with respect to private label price) is:

\[
\eta_{12}^l = \frac{\alpha_{12}}{S_l^2} + \alpha_{13} \frac{S_l^2}{S_l^2}
\]

(14)

where: S_l^l and S_l^2 are sample average market shares or any other market share value. Note that these demand elasticities vary as market shares vary. Thus they are local or point estimates of the elasticities. The expenditure elasticity is given by the following formula:

\[\eta^l = \frac{\alpha_{11}}{S_l} + \alpha_{13}
\]

5 See Deaton and Muellbauer (1980a, 1980b) for an explanation of Stone's index.
The Elasticities for variables, d^k, in the D-vector of exogenous demand shift variables are:

$$
\eta^{ij} = 1 + \frac{\alpha_{ij}}{S'}
$$

(15)

The Elasticities for variables, d^k, in the D-vector of exogenous demand shift variables are:

$$
e^k = \frac{\alpha_{ij}}{S'}d^k
$$

(16)

where $k = 1...m$ is the index for the number of variables in the D vector and $\overline{d^k}$ is the average value of d^k. The price reaction elasticity for national brands, which gives the present change in brand price for a one percent change in private label price, is β_{ij} in equation 12. The corresponding equations and elasticity formulae for private label are analogous to the branded equations presented above (equations 11 to 16). Taking the anti-log of equation 12 gives the price reaction function for national brands:

$$
P_{y}^{i} = e^{\beta_{i0}} \cdot D_{0}^{\beta_{i2}} \cdot (W_{y}^{i})^{\beta_{i3}} \cdot (P_{y}^{2})^{\beta_{i4}}
$$

(17)

Note that the slope of the price reaction function depends on the values of the exogenous variables in the system and their parameter estimates. Since all these variables are positive, the slope of the reaction is positive if and only if β_{ij} is positive.

Finally, note that market share can be included in equations (12) and (17) to capture the effect of oligopolistic interdependence upon profit maximizing prices. Specifying share in the price reaction equation makes the model fully simultaneous as opposed to recursive in nature. Now brand price can have a negative (demand relationship) with share in the brand demand equation. However, a reverse relationship (share positively related to price) can occur in the price reaction curve capturing the power of brands vis à vis a small, weak private label sector.

6 If some variables are expressed in logarithmic form, then this elasticity formula has the inverse of d^k rather than d^k on the right hand side.
3. Empirical Framework

With any theory and data set, the transition from the theoretical model to empirical specification entails the need for careful variable selection. We that it is important to choose the model carefully, using nested hypothesis tests if possible to guide final model specification. Consequently, we specify three nested empirical models below. Using nested hypothesis tests, we then select the “best” of the three specifications given the available data. In the first model (“Price Model”), we begin by presenting the simplest model implied by the theory presented above. Market share is not included in the price reaction equations, as in equations (12) and (17), making the model recursive in nature. We then expand this “base” specification by including market share in the price reaction functions, thereby creating a fully simultaneous system (“Market Power Model”). Finally, we expand this to include all promotion variables on both the demand and supply sides (“Full Power and Promotion Model”). A priori, since prior work in economics has demonstrated the importance of variables measuring market power, and prior work in marketing has shown the importance of promotion variables, we expect that the final “full” model will be preferred.

The model developed here is called the “Price Model” since the price variables are the main conjectural variables included in the analysis. This model includes only price, expenditure, as well as certain demand and cost shift variables. The four-equation Price Model specification is as follows (variable definitions for this and the other two specifications can be found in Chart 1): 7

\[
\text{BRSHARE} = \alpha_{10} + \alpha_{11} \text{BRPRICE} + \alpha_{12} \text{PLPRICE} + \alpha_{13} \text{EXPENDITURE} + \alpha_{14} \text{PLDISTN} + \alpha_{15} \text{INCOME} + \\
\alpha_{16} \text{HISPANIC} + \alpha_{17} \text{FAMAGE} + \epsilon_1
\]

7 Consistent with previous work on private labels (e.g., Slade 1995), aggregate private label and national brand variables were created for share, price and price reduction. Private label (national brand) share is sum of all private label (national) brands in the ith market, jth category. Private label (national brand) price is the volume-weighted average price of all private labels (national brands) in the ith market, jth category. The two price reduction variables are volume-weighted percent price reduction for all private label and branded products, respectively. Thus, for price and
\[\begin{align*}
PLSHARE &= \alpha_{20} + \alpha_{21} BRPRICE + \alpha_{22} PLPRICE + \alpha_{23} EXPENDITURE + \alpha_{26} PLDISTN + \alpha_{29} INCOME + \\
& \quad \quad \alpha_{210} HISPANIC + \alpha_{211} FAMAGE + \varepsilon_2 \\
BRPRICE &= \beta_{10} + \beta_{11} PLPRICE + \beta_{12} BRPRICEREDN + \beta_{13} BRVOLPUN + \beta_{17} EXPENDITURE + \\
& \quad \quad \beta_{112} PLDISTN + \beta_{113} INCOME + \beta_{114} HISPANIC + \beta_{115} FAMAGE + \omega_1 \\
PLPRICE &= \beta_{20} + \beta_{21} BRPRICE + \beta_{22} PLPRICEREDN + \beta_{23} PLVOLPUN + \beta_{27} EXPENDITURE + \\
& \quad \quad \beta_{212} PLDISTN + \beta_{213} INCOME + \beta_{214} HISPANIC + \beta_{215} FAMAGE + \omega_2
\end{align*} \]

(18)

Note this framework is used as a base model for the hypotheses tests to follow. The missing numbers in the coefficient sequences above \((\alpha_{10}, \alpha_{11}, \alpha_{12}, \alpha_{13}, \alpha_{18}, \ldots)\) reflect the fact that the Price Model is a restricted version of the more general models presented below.

Chart 1. Definitions for Variables Used in the Analysis

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRSHARE</td>
<td>Aggregate share of category expenditure for branded products in the ith market, jth category</td>
</tr>
<tr>
<td>PLSHARE</td>
<td>Aggregate share of category expenditure for private label products, ith market, jth category</td>
</tr>
<tr>
<td>BRPRICE</td>
<td>Natural log of the price of the branded product in the ith market, jth category</td>
</tr>
<tr>
<td>PLPRICE</td>
<td>Natural log of the price of the private label product in the ith market, jth category</td>
</tr>
<tr>
<td>EXPENDITURE</td>
<td>Natural log of per capita category expenditures deflated by Stone’s price index</td>
</tr>
<tr>
<td>BRFEATURE</td>
<td>Percent of branded products sold with feature advertising in the ith market, jth category</td>
</tr>
<tr>
<td>BRDISPLAY</td>
<td>Percent of branded products sold with displays and POS promotion, ith market, jth category</td>
</tr>
<tr>
<td>PLFEATURE</td>
<td>Percent of private label products sold with feature advertising in the ith market, jth category</td>
</tr>
<tr>
<td>PLDISPLAY</td>
<td>Percent of private label products sold with displays and POS promotion</td>
</tr>
<tr>
<td>INCOME</td>
<td>Natural log of average household income in the local market</td>
</tr>
<tr>
<td>HISPANIC</td>
<td>Percent of population in the local market of Hispanic decent</td>
</tr>
<tr>
<td>AGE</td>
<td>Average age of the local market population</td>
</tr>
<tr>
<td>PLDISTN</td>
<td>Private label average distribution in the ith market, jth category</td>
</tr>
<tr>
<td>BRPRICEREDN</td>
<td>Weighted percent average price reduction, branded products, ith market, jth category</td>
</tr>
<tr>
<td>PLPRICEREDN</td>
<td>Weighted percent average price reduction, private label products, ith market, jth category</td>
</tr>
<tr>
<td>BRVOLPUN</td>
<td>Natural log of average volume (weight) per package unit sold for branded product</td>
</tr>
</tbody>
</table>

share, we have four aggregate variables: total branded share, total private label share, volume-weighted average price of national brands, and the volume-weighted average price of private label products.

8 Note that the choice of variables was influenced by data availability. For example, no coupon or national advertising information was available. Also, average age, income and percent Hispanic were the only local demographic variables available.
Empirical Specification II - “Market Power Model”

The Price Model can be extended in two ways to provide more insight into private label and national brand pricing. We begin first by concentrating on the supply-side effects of differences in market power (hence the term “Market Power” model), and then further expand the analysis and specification to include all demand-side promotion variables (hence the term “Full Power and Promotion Model”).

We begin here by relaxing the Bertrand assumption. Oligopolistic interdependence in the generalized Bertrand model is captured by the level of the price conjectures. This seems reasonable given that the price reaction equations explicitly predict that profit maximizing firms will price conditional upon the other firm’s price, and that firms observe that other firms react to their price changes. If firms follow each other’s price moves completely (perfect tacit collusion) each firm's price conjecture has a value of one rather than zero as assumed in a Nash-Bertrand model. As the conjectural variation increases, the slope of the corresponding price reaction curves increases (Liang 1987).

The conjectural variations approach has been used elsewhere to estimate price conjectures (Iwata 1974, Kadiyali, Vilcassim and Chintagunta 1996b). Here, following Cowling and Waterson (1976) and Kwoka and Ravenscraft (1986), their values are hypothesized to be functions of observable market structure. We specify national brand market share and the brand level Herfindahl index in each logarithmic price reaction equation to capture the effect of changes in oligopolistic interdependence upon profit maximizing prices. National brand market share is, by

9 Deneckere and Davidson (1985) and Willig (1991) demonstrate that market share may be positively related to price even in Bertrand models because larger share brands are able to unilaterally raise price. This suggests that our empirical model measures unilateral as well as coordinated market power effects. Others, however, have disputed the existence of a positive share price relationship within the Bertrand model (Werden and Froeb 1996). See Willig (1991, pp. 299-305) for a discussion of the ability of market share to predict price levels in differentiated product markets.
definition, the sum of all national brand shares. As discussed in the introduction, it is hypothesized to have a positive impact upon branded price levels because as it increases, the market power of national brands increases due to reduced private label presence in the category.

The brand level Herfindahl index is defined as the sum of the square of all individual brand market shares. As such, when introduced jointly with national brand market share, it measures the size dispersion of brands. For example, branded share may sum to .80 (80 percent), while there may be only two brands each with .40 share. In this case, the brand level Herfindahl index equals .32. However, if there are 80 brands each with .01 market share (much like the breakfast cereal category), then the brand Herfindahl is only .008. Since the brand level Herfindahl index measures the degree of product differentiation via brand proliferation, we hypothesize that it will be negatively related to the prices of branded products. Segmentation and multiple brand strategies in a category tend to elevate the prices of all national brands (Willig 1991; Levy and Reitzes, 1993; Werden and Rozanski 1994, Putsis 1997).

The relationship between the brand level Herfindahl and price is likely to be different for private label products, however. One might expect that elevated national brand prices in markets with low brand Herfindahls would allow private labels to also increase price. However, Schmalensee’s (1978) analysis of brand proliferation as a barrier to entry suggests that the impact of the brand Herfindahl upon private label prices may be positive. As leading firms in these markets build portfolios of brands with small shares, it is harder for private labels to enter with a me-too brand. For example, many successful children’s cereal brands capture only .006 (.6%) of the cereal market. A private label brand can hope at best to capture one third of this. The resulting volume is not sufficient to sustain production and distribution. Therefore, we hypothesize that private label price is positively related to the brand level Herfindahl index. We also specify the retail grocery four firm concentration ratio in the price reaction curves to capture the increased oligopolistic interdependence in cities where a few supermarket chains account for most of the sales. Both branded and private label prices are hypothesized to be higher in more

10 Note that the brand Herfindahl index is not the company Herfindahl index. The brand level Herfindahl in breakfast cereal, for example, is very low but the company level Herfindahl is very high because each of the top three companies sells many brands. Company Herfindahls are not available for inclusion in this study.
concentrated local markets.

A second extension of the Price Model addressed in the Market Power Model is the inclusion of trade promotion variables in the price reaction function. These promotion variables are: short term percent price reduction, percent of volume sold on display, and percent of volume sold with a local newspaper feature ad. While one could model these as additional strategic variables to create a multi-dimensional game, this would generate six more reaction equations and prevent estimation of the system due to insufficient exogenous cost shift variables in those equations to identify them. We specify these variables as exogenous strategic factors that each duopolist uses to determine price levels and/or shift demand. Since IRI reported prices are net of promotional price reductions, the level of price reduction is clearly one determinant of reported price. Thus, percent price reduction for national brands (private label) are specified in the branded (private label) price reaction equation. Similarly, display and feature and programs are strongly tied to shelf price reduction strategies and may effect demand primarily via changes in retail prices. This formulation implies specifying the national brand feature and display variables only in the branded price reaction equation and the private label feature and display variables only in the private label price reaction equation. Thus, the Market Power model is specified as follows:
BRSHARE = \(\alpha_{10} + \alpha_{11} \) BRPRICE + \(\alpha_{12} \) PLPRICE + \(\alpha_{13} \) EXPENDITURE + \(\alpha_{14} \) PLDISTN + \(\alpha_{15} \) INCOME + \(\alpha_{16} \) HISPANIC + \(\alpha_{17} \) FAMAGE + \(\varepsilon_1 \)

PLSHARE = \(\alpha_{20} + \alpha_{21} \) BRPRICE + \(\alpha_{22} \) PLPRICE + \(\alpha_{23} \) EXPENDITURE + \(\alpha_{24} \) PLDISTN + \(\alpha_{25} \) INCOME + \(\alpha_{26} \) HISPANIC + \(\alpha_{27} \) FAMAGE + \(\varepsilon_2 \)

\((19) \)

BRPRICE = \(\beta_{10} + \beta_{11} \) PLPRICE + \(\beta_{12} \) BRPRICEREDN + \(\beta_{13} \) BRVOLPUN + \(\beta_{14} \) BRSHARE + \(\beta_{15} \) HERFINDAHL + \(\beta_{16} \) GROCCR4 + \(\beta_{17} \) EXPENDITURE + \(\beta_{18} \) BRFEATURE + \(\beta_{19} \) BRDISPLAY + \(\beta_{20} \) PLDISTN + \(\beta_{21} \) INCOME + \(\beta_{22} \) HISPANIC + \(\beta_{23} \) FAMAGE + \(\omega_1 \)

PLPRICE = \(\beta_{20} + \beta_{21} \) BRPRICE + \(\beta_{22} \) PLPRICEREDN + \(\beta_{23} \) PLVOLPUN + \(\beta_{24} \) BRSHARE + \(\beta_{25} \) HERFINDAHL + \(\beta_{26} \) GROCCR4 + \(\beta_{27} \) EXPENDITURE + \(\beta_{28} \) BRFEATURE + \(\beta_{29} \) BRDISPLAY + \(\beta_{30} \) PLDISTN + \(\beta_{31} \) INCOME + \(\beta_{32} \) HISPANIC + \(\beta_{33} \) FAMAGE + \(\omega_2 \)

Empirical Specification III (“Full Power and Promotion Model”)

A third model, the full power and promotion model, specifies the four promotion variables (branded feature, branded display, private label feature, and private label display) in each demand and price reaction equation. This allows the promotion variables to have a direct share expanding effect as well as the indirect effect via prices that was addressed in the previous model. This specification corresponds with the standard conceptualization of end-aisle displays and feature ads increasing sales even if there is no price promotion. This implies the following specification:
\[\text{BRSHARE} = \alpha_{10} + \alpha_{11} \text{BRPRICE} + \alpha_{12} \text{PLPRICE} + \alpha_{13} \text{EXPENDITURE} + \alpha_{14} \text{BRFEATURE} + \]
\[\alpha_{15} \text{BRDISPLAY} + \alpha_{16} \text{PLDISTN} + \alpha_{17} \text{PLFEATURE} + \alpha_{18} \text{PLDISPLAY} + \]
\[\alpha_{19} \text{INCOME} + \alpha_{110} \text{HISPANIC} + \alpha_{111} \text{FAMAGE} + \epsilon_1 \]

\[\text{PLSHARE} = \alpha_{20} + \alpha_{21} \text{BRPRICE} + \alpha_{22} \text{PLPRICE} + \alpha_{23} \text{EXPENDITURE} + \alpha_{24} \text{BRFEATURE} + \]
\[\alpha_{25} \text{BRDISPLAY} + \alpha_{26} \text{PLDISTN} + \alpha_{27} \text{PLFEATURE} + \alpha_{28} \text{PLDISPLAY} + \]
\[\alpha_{29} \text{INCOME} + \alpha_{210} \text{HISPANIC} + \alpha_{211} \text{FAMAGE} + \epsilon_2 \]

\[\text{BRPRICE} = \beta_{10} + \beta_{11} \text{PLPRICE} + \beta_{12} \text{BRPRICEREDN} + \beta_{13} \text{BRVOLPUN} + \beta_{14} \text{BRSHARE} + \]
\[\beta_{15} \text{HERFINDAHL} + \beta_{16} \text{GROCCR4} + \beta_{17} \text{EXPENDITURE} + \beta_{18} \text{BRFEATURE} + \]
\[\beta_{19} \text{BRDISPLAY} + \beta_{110} \text{PLFEATURE} + \beta_{111} \text{PLDISPLAY} + \beta_{112} \text{PLDISTN} + \]
\[\beta_{113} \text{INCOME} + \beta_{114} \text{HISPANIC} + \beta_{115} \text{FAMAGE} + \omega_1 \]

\[\text{PLPRICE} = \beta_{20} + \beta_{21} \text{BRPRICE} + \beta_{22} \text{BRPRICEREDN} + \beta_{23} \text{PLVOLPUN} + \beta_{24} \text{BRSHARE} + \]
\[\beta_{25} \text{HERFINDAHL} + \beta_{26} \text{GROCCR4} + \beta_{27} \text{EXPENDITURE} + \beta_{28} \text{BRFEATURE} + \]
\[\beta_{29} \text{BRDISPLAY} + \beta_{210} \text{PLFEATURE} + \beta_{211} \text{PLDISPLAY} + \beta_{212} \text{PLDISTN} + \]
\[\beta_{213} \text{INCOME} + \beta_{214} \text{HISPANIC} + \beta_{215} \text{FAMAGE} + \omega_2 \]

Since the Full Power and Promotion Model includes both the demand and supply side effects of promotion, as well as the relevant variables influencing market power, we expect that hypothesis tests will support this model over the Price Model and the Market Power Model. Table 1 summarizes our maintained hypotheses.

Note that our nine hypotheses are not all-inclusive. A few of the coefficient signs are not predicted by our theory. Examples include the effects of age, deflated per capita category expenditures, and the percent Hispanic on own market shares.

4. Empirical Estimation

The data used in this study are annual IRI market-level data on food products across 59 geographic markets and 211 categories for 1991 and 1992. Categories were excluded from the analysis if they contained missing data, or if they were categories where private labels have not been introduced. This left 143 categories in the sample and 7,197 observations for an average coverage of 50 out of 59 possible cities for a typical category. National brand share averaged .783, while private label share was .217 in 1992.
These data are merged with independent data from *Progressive Grocer* on the demographic characteristics of the IRI geographic markets. Thus, we have two principal dimensions on which the data vary - across categories and across geographic markets. Consistent with previous work in the private label area (e.g., Sethuraman and Mittelstaedt 1992; Hoch and Banerji 1993; Slade 1995), aggregate branded and private label variables were created for the 143 product categories and 59 markets. Brand price, feature, display, and price reduction variables are volume as opposed to dollar market share weighted averages. IRI reports corresponding aggregate private label variables for all categories and local markets.

In estimating cross-category price equations, it is important to note that cross-category analysis precludes the use of price levels. One cannot compare the price of a pound of cheese to the price of canned soup. Following Kelton and Weiss (1989), we will estimate the first difference form of our model. The parameters estimated in the first difference model are identical to those in equations 18-20 and thus can be used to compute elasticities. In the following sections, all reported estimates use the annual difference rather than the level of the variable for 1991 to 1992. For example BRSHARE is 1992 BRSHARE minus 1991 BRSHARE and BRPRICE is the 1992 ln BRPRICE minus the 1991 ln BRPRICE. Changes in the natural logarithm of price from 1991 to 1992 are percent price changes which can be analyzed across categories.

Estimating a first difference model is also attractive because it controls for first order fixed effects due to excluded local market and category variables in level regressions.11 Further, to the extent that private label quality is constant from 1991 to 1992, estimating a first difference model eliminates the need for the inclusion of a category private label quality measure - an assumed constant level of quality drops out of the analysis when we difference. This is particularly important since quality measurement is such a difficult task (Hoch and Banerji 1993 and Narasimhan and Wilcox 1996).

Although our model has four equations, one of the demand equations is redundant for

11 Hausman and Taylor (1981) argue that excluded local market variables in panel data of this type can bias estimation results for level regressions. They show that this can be avoided by specifying a set of city binary variables. These drop out of the model when one takes the first difference. This is also true for specifying a set of category binary variables in level regressions to control for excluded variables in individual categories.
estimation purposes. Since the market shares of national brands and private labels sum to one, any loss of branded share due to changes in any variable, e.g. private label price, must go to private label share. This general adding up property of a demand system means that we can recover the estimated coefficients and standard errors (t-ratios) for the dropped equation. We drop the private label demand equation and estimate the remaining 3 equations with three stage least squares. We do not impose the homogeneity and symmetry restrictions of demand theory because they would restrict the four own price and cross price coefficient to a common value in this aggregate two-good demand system.

5. Results

Results are reported in Tables 1 through 4. Since traditional R² measures are not bounded between zero and one in three stage least squares, Carter and Nagar’s (1977) multiple squared coefficient of correlation for simultaneous systems, R_w^2, is used here and reported in Tables 1 through 3. Since the model structure represented by the three models was nested, zero parameter restrictions were tested via an analog of the likelihood ratio test (Gallant and Jorgenson 1979; Kiviet 1985; Judge 1985). We tested two sets of zero parameter restrictions - the first set of restrictions being β_{14}, β_{15}, β_{16}, β_{18}, β_{19}, β_{24}, β_{25}, β_{26}, β_{28}, and β_{29} all equal zero, and the second set adds the α_{14}, α_{15}, α_{17}, α_{18}, α_{24}, α_{25}, α_{27}, α_{28}, β_{110}, β_{111}, β_{210} and β_{211} all equal to zero. The test statistic T^0, distributed as a chi-square (see Gallant and Jorgenson 1979), leads us to strongly reject both sets of zero parameter restrictions.

Since the inclusion of all market power and promotion variables are supported by the nested hypotheses tests, we will discuss only the Full Power and Promotion Model below. For completeness, Table 1 reports estimation results for the Price Model, while Table 2 reports estimation results for the Market Power Model. Note that parameters and t-ratios are recovered for the private label demand equations as well.¹³

¹² R_w^2 has a usual R² interpretation. Specifically, it measures the percent of system-wide variation in the exogenous variables explained by all independent variables in the system. It is bounded by zero and one.

¹³ The adding up condition of the demand system requires that all coefficients on a particular variable to sum to zero. With only two demand equations in the system, the recovered private label coefficients and t-ratios are the negative of the corresponding national brand values. For example, if a unit increase in the national brand price reduces
Table 3 presents estimation results for the Full Power and Promotion Model. In Figure 1, nine hypotheses were presented, with a total of 27 predicted signs. All 27 of the estimated coefficients were of the predicted signs, with 24 of the 27 coefficients significant at the 5% level or better. We now turn to a discussion of the hypotheses presented in Figure 1.

Price and Share Effects

After estimating both share and price reaction equations simultaneously, the share-price relationship becomes clear. An increase in the price of a national brand decreases its share, a standard demand-side effect. The same is true for private label products. Conversely, a one percent increase in branded share increases the price of branded products by over four percent, a supply-side effect caused by a higher degree of market power. An increase in private label share does not result in a higher price for private label products presumably because of the fact that the market power of private labels (even with increases in share) is quite small. As discussed in the introduction, higher prices lower share, while higher share increases the ability of branded manufacturers to raise prices.

The own and cross price coefficients in the demand equations (H1) have the hypothesized signs and are significant at the 1 percent level. The direction and significance levels of the expenditure effects indicate that national brands are viewed as luxuries and private labels as necessities (in an economic sense). As expenditures on a category increase, more goes to national brands than to private labels. This is consistent with recent work on category expenditure (Putsis and Dhar 1997). Increases in household income (H3) behave like increases in category per capita expenditures - income gains significantly increase (decrease) branded (private label) share. Private label distribution measures the proportion of supermarkets that sell private labels in a national brand market share by five percentage points, private label market share must fall by a corresponding percentage points.
given market. As expected (H4), private label penetration has a strongly significant negative (positive) relation to branded (private label) share.

Each price reaction equation has a positive and significant slope with regard to the other price as hypothesized (H5). The estimated elasticities, however are not high. A one percent increase in private label prices elicits only a .1308 percent increase in national brand price, while a one percent increase in national brand price elicits only a .1076 percent increase in private label price. Price followship between private labels and national brands is positive, as conjectured earlier, but it is not strong. The volume per unit (H6) variables behave as hypothesized and are highly significant. Branded prices are significantly lower in cities with a larger percent of the population that is Hispanic.

Market Power and Promotion Effects

In terms of the market structure variables in the price reaction equations, an increase in national brand share has a significant positive impact on national brand prices (H7), suggesting that national brands can profitably raise price when private label competition is weak. The brand Herfindahl coefficients (H8) have the hypothesized sign: categories with many brands (low Herfindahl) have higher national brand prices. As suggested by Schmalensee (1978) and Putsis (1997), brand proliferation elevates all brand prices and makes it more difficult for private label to compete. Retail grocery four firm concentration (H9) has the hypothesized market power effect - increases in the share of the top four supermarkets in a city elevates retail prices, although this result is not significant in the branded price equation.

The four feature and display variables, as expected (H2) are highly significant in the demand equations. Branded display and feature strongly increase national brand share and decrease private label share. Private label feature and display have the same expected effect for private labels. The results suggest that the promotions-share effects are asymmetric. Branded promotions have a greater effect on branded share than that of private label promotions on private label share.

In the branded price reaction equation, national brand feature and display have a strong negative estimated coefficient. When price cuts occur, feature advertising and point of sale (POS)
displays occur more frequently, advertising the price cuts. However, the private label display and feature have an interesting and opposite effect in the national brand price equation. When private label display and feature ads are active, branded prices are higher. Retailers promote private labels to consumers when national brand prices are high. Recent experience in the breakfast cereal industry is consistent with this strategy (Gejndenson and Schumer 1995, 1996; Angrisani, 1996; Cotterill 1996; Kahn 1996). Although the four feature and display variables have strong effects on national brand prices, they have no significant effect on private label prices. Retailers seem to have an "everyday low" private label price that they stress via promotion when national brand prices get out of line.

Demand Elasticities and Convergence with Previous Research

Recall from the theoretical section that we can recover demand (quantity) price elasticities from the share equations within the LA/AIDS framework for both private label and branded products. Table 4 presents estimated demand elasticities for all three models. It was reassuring to note that the estimated elasticities are extremely robust with respect to specification. Although the market power and promotion variables add to the explanatory power of the model, the estimated demand elasticities are almost identical in the full and restricted models.

The estimated own price elasticities for branded product and private label cluster around unitary elasticity, on the lower end of the elasticities reported by Tellis (1988). Our results suggest that national brands and private labels, as a group, are maximizing the revenue from their sales.

< Table 4 about here >

Branded price does have a significant positive effect on private label sales in all three models. Private label price variations, however, have negligible effects on national brand sales. This is consistent with most of the work on asymmetric price competition and price tiers (Blattberg and Wisniewski 1989; Allenby and Rossi 1991); the estimated cross-price elasticity in the Full Power and Promotion Model is .26, within one standard deviation of the mean cross-price elasticity reported in Sethuraman (1995).

The expenditure elasticities are above 1.0 in all three models for national brands and below
1.0 in all three models for private labels. Household income elasticities (mean household income in 1992 was $39,358) in Table 4 indicate that an increase in household income has a very small but significant positive impact on branded volume and a very small but significant negative impact on private label volume. This suggests that higher income implies a lower level of private label consumption, i.e., it is an inferior good. The fact that both income elasticities are less than one implies that food is a necessity and, as income increases, a smaller portion of the budget is allocated to it.

6. Discussion and Managerial Implications

Analysis of panel data such as the IRI Supermarket Review data studied here combined with consideration of both demand and supply side influences provide considerably more insight into competitive strategies than do single-equation cross sectional studies. Previous single equation studies have found a positive price-share relationship (share as a function of price). When market share and price reaction equations are estimated simultaneously (including market power variables), it becomes clear that the share-price relationship is multi-dimensional. Specifically, there are two relationships - the negative demand side relationship and the positive impact of share in the price reaction equations.

In order to get a more complete view of the answer to this question and in an attempt to produce generalizable results, we have taken a very “macro” approach, looking across a variety of categories and geographic markets. We felt it important to understand “the big picture” first, especially given the recent focus in marketing on generalizability and given this is the first study to address the impact of competitive response on the private label-national brand share-price relationship. In taking this approach, we recognize the inherent tradeoffs. While we gain generalizability, we lose much of the richness of more disaggregate analysis. For example, the detail of Dillon and Gupta (1996) or the differentiation between promotion frequency and depth from Raju (1992) is not possible in the current framework. Nonetheless, we find significant and important findings that generalize across categories, parameter estimates consistent with previous studies, and results supported by theory. It is our hope that these results will encourage more detailed analysis at the disaggregate level.
When conducting such an analysis, however, one other important issue arises - the possibility of aggregation bias. Christen, Gupta, Porter, Staelin and Wittink (1996) demonstrate that non-linear models estimated with linearly aggregated data can produce biased response parameters. The intuition behind this bias is similar to aggregation biases in advertising, (Leone 1995), diffusion (Putsis 1996) and demand analysis (Deaton and Muellbauer 1980a). However, the LA/AIDS model has especially nice aggregation properties. First, it does not necessitate the assumption of parallel linear Engel curves in order to achieve exact aggregation (see, e.g., Deaton and Muellbauer 1980b). This implies that estimated expenditure relationships are “representative” and do not contain the same bias as suggested by Christen, et. al. (1996). Second, it is easy to demonstrate that any bias in marketing mix response estimates can be eliminated by first differencing, provided that relative store prices remain the same from one period to the next.\(^{14}\)

We offer two arguments that suggest that this is a reasonable assumption. First, retail costs and manufacturer incentives are likely to vary similarly across stores over time in a given market, suggesting that retail prices in a given market should vary approximately by the same proportions over time. Second, Christen, et. al. (1996) report that the magnitude of the bias can be severe, with the average error of over 100 percent for low frequency promotion items. Yet, despite this, our parameter estimates for own-demand response, cross-demand response and competitive reactions are consistent with a number of previous studies (see Results section). Based upon the consistency of our results with previous studies, we conclude that any aggregation bias, if present at all, is kept to a minimum.

Once we address the multi-dimensional nature of the share-price relationship, certain implications for brand managers and retailers become clear:

- Brand managers should expect to face traditional demand relationships regardless of whether they are managing a national brand or a private label - an increase in the price of a national

\(^{14}\) This can be shown quite easily. Under a first difference model, all variables are expressed as the change from period \(t\) to \(t+1\). Since the marketing mix response in a LA/AIDS model is log-log in share, first differencing expresses prices, for example, as the log of the ratio of prices in \(t\) and \(t-1\). As long as the relative prices move together, the ratio of the prices is constant. Thus, if the percent change in prices is the same from store to store, the bias is eliminated (this is analogous to homogeneous marketing mix variables in the Christen, et. al. 1996 paper). Thus, it is not necessary that all
brand (private label) lowers national brand (private label) share. There are no free lunches here - a higher price means a lower share, *ceteris paribus*.

- Promotions increase share, while rival promotions lower share. Further, promotion effects are asymmetric. For branded products, a 10% increase in POS display activity, for example, increases share by about 1.3%. In contrast, a similar 10% increase in POS display activity for private label products increases its share by only 0.87%.

- Branded prices are higher in categories with extensive product proliferation. Private labels have greater difficulty competing in these categories, and lower prices in an attempt to compete. However, the cross price elasticities suggest this is a meager way to capture volume from national brands. Feature and display promotion appear to be much more effective ways of gaining share in such categories.

- An increase in retail concentration increases both branded and private label price, but the advance in private label prices is nearly twice as large as national brand price increases. This suggests that leading supermarket chains are able to establish at least some brand loyalty for their own brands and can effectively narrow the price differential between national brands and private labels by elevating prices to improve profitability.

- Display and feature promotion activities increase sales as expected and private label display and promotion are positively related to national brand price levels. This suggests that a retail strategy of promoting private labels when branded prices are high can be successful in taking share away from high priced national brands.

- Cross price elasticities are decidedly asymmetric with national brand price having a major impact on private label sales, whereas private label price has very little impact on branded sales. This is consistent with the work on asymmetric competition and price tiers (Blattberg and Wisniewski 1989; Allenby and Rossi 1991).

- Managers responsible for private labels operating in markets with higher per capita income or categories with a higher level of expenditure will have a more difficult time penetrating the market. More generally, we would expect private labels to suffer during stronger economic

consumers at all stores face the same prices. We would argue that assuming that the relative prices remain the same from one period to the next is much more tenable than assuming that all stores have the same prices.
As discussed in the introduction, insights into the effectiveness of competitive strategies for branded and private label grocery products entails an understanding of not only the effectiveness of various strategies on the demand side, but an understanding of the competitive interaction between national brands and private labels as well. In order to assess the viability of such strategies, it is important to differentiate between the direct demand side effect and the likely response of rival firms. The present research represents a initial attempt to address these issues. In doing so, we expand on previous work that has found a negative relationship between private label share and the branded-private label price differential by suggesting that the share-price relationship is multi-dimensional. Further, we demonstrate that even in a cross-category analysis, appropriate share-price relationships can be estimated by employing the appropriate empirical specification. We encourage future research in this area, in particular, addressing competitive interaction on category-by-category basis with the use of disaggregate data.
References:

Figure 1. A Summary of Maintained Hypotheses

<table>
<thead>
<tr>
<th>Hypotheses</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1: (\alpha_{11}, \alpha_{22} < 0; \alpha_{12}, \alpha_{21} > 0)</td>
<td>Standard economic theory predicts negative own-price elasticities and positive cross-price elasticities for substitute goods. Further, effects should be asymmetric (Blattberg and Wisniewski 1989).</td>
</tr>
<tr>
<td>H2: (\alpha_{14}, \alpha_{15}, \alpha_{27}, \alpha_{28} > 0) (\alpha_{17}, \alpha_{18}, \alpha_{24}, \alpha_{25} < 0)</td>
<td>Increased own promotions have a positive impact on own sales and a negative impact on the rival’s sales</td>
</tr>
<tr>
<td>H3: (\alpha_{19} > 0) (\alpha_{29} < 0)</td>
<td>As per capita income in a market increases, we expect that branded share increases and private label share decreases.</td>
</tr>
<tr>
<td>H4: (\alpha_{16} < 0; \alpha_{26} > 0) (\beta_{112} < 0; \beta_{212} > 0)</td>
<td>As more supermarkets in a local market carry private labels (increased private label distribution), the share and price of national brands decrease (due to the increased competition), and the share and price of private labels increase.</td>
</tr>
<tr>
<td>H5: (\beta_{11}, \beta_{21} > 0)</td>
<td>The slope of the price reaction curves are positive (Deneckere and Davidson 1985).</td>
</tr>
<tr>
<td>H6: (\beta_{13}, \beta_{23} < 0)</td>
<td>Increasing average package size lowers cost, thereby lowering market price.</td>
</tr>
<tr>
<td>H7: (\beta_{14} > 0)</td>
<td>Increasing national brand share increases the market power of branded products, increasing the ability of national brand manufacturers to raise price (Deneckere and Davidson 1985, Wills 1985, Haller 1993, Haller and Cotterill 1996).</td>
</tr>
<tr>
<td>H8: (\beta_{15} < 0; \beta_{25} > 0)</td>
<td>Decreasing brand Herfindahl due to product proliferation increases the market power of incumbents by creating entry barriers, thereby raising national brand prices (Schmalensee 1978, Putsis 1997).</td>
</tr>
<tr>
<td>H9: (\beta_{16}, \beta_{26} > 0)</td>
<td>Increases in grocery firm local market concentration increase prices due to increased market power at the retail level (Marion et. al., 1979, Weiss 1989, Cotterill and Harper 1995).</td>
</tr>
</tbody>
</table>
Table 1 Estimation Results for Price Model

<table>
<thead>
<tr>
<th>Demand Equations</th>
<th>Price Reaction Equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Branded Price</td>
<td>0.0127 (-3.413)** 0.0127 (3.413)**</td>
</tr>
<tr>
<td>Private Label Pr</td>
<td>0.0071 (2.294)* -0.0071 (-2.294)*</td>
</tr>
<tr>
<td>BR Price Reduction</td>
<td>-0.1802 (-13.31)**</td>
</tr>
<tr>
<td>PL Price Reduction</td>
<td>-0.8782 (154.8)**</td>
</tr>
<tr>
<td>BR Volume/Unit</td>
<td>-0.0589 (20.02)** -0.0589 (-20.02)**</td>
</tr>
<tr>
<td>PL Volume/Unit</td>
<td>-0.1921 (-37.02)** 0.1921 (37.02)**</td>
</tr>
<tr>
<td>Expenditure</td>
<td>0.0186 (2.732)** -0.0186 (-2.732)**</td>
</tr>
<tr>
<td>Income</td>
<td>0.0554 (0.777) -0.0554 (-0.777)</td>
</tr>
<tr>
<td>Hispanic</td>
<td>0.0007 (-0.180) 0.0007 (0.180)</td>
</tr>
<tr>
<td>Family Age</td>
<td>-0.8782 (154.8)**</td>
</tr>
</tbody>
</table>

** significant at the 1% level.
* significant at the 5% level.

Number of Observations = 7197; \(R_w^2 = .750 \)

Table 2 Estimation Results for the Market Power Model

<table>
<thead>
<tr>
<th>Demand Equations</th>
<th>Price Reaction Equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Branded Price</td>
<td>-0.0348 (-9.508)** 0.0348 (9.508)**</td>
</tr>
<tr>
<td>Private Label Pr</td>
<td>0.0257 (8.490)** -0.0257 (-8.490)**</td>
</tr>
<tr>
<td>Br Price Reduction</td>
<td>0.0924 (-6.866)**</td>
</tr>
<tr>
<td>PL Price Reduction</td>
<td>-0.8500 (-150.2)**</td>
</tr>
<tr>
<td>BR Volume/Unit</td>
<td>-0.1978 (-1.781)</td>
</tr>
<tr>
<td>PL Volume/Unit</td>
<td>0.1016 (-3.396)**</td>
</tr>
<tr>
<td>Branded Share</td>
<td>0.0352 (2.662)*</td>
</tr>
<tr>
<td>Brand Herf.</td>
<td>0.0587 (19.88)** -0.0587 (-19.88)**</td>
</tr>
<tr>
<td>Grocery CR4</td>
<td>-0.2128 (-8.094)**</td>
</tr>
<tr>
<td>Expenditure</td>
<td>-0.3666 (-18.50)**</td>
</tr>
<tr>
<td>Br Feature</td>
<td>0.1908 (-36.61)** 0.1908 (36.61)**</td>
</tr>
<tr>
<td>Br Display</td>
<td>-0.0196 (2.870)**</td>
</tr>
<tr>
<td>PL Distribution</td>
<td>0.0446 (0.622) -0.0446 (-0.622)</td>
</tr>
<tr>
<td>Hispanic</td>
<td>0.0006 (-0.245)</td>
</tr>
<tr>
<td>Family Age</td>
<td>0.0036 (0.245)</td>
</tr>
</tbody>
</table>

** significant at the 1% level.
* significant at the 5% level.

Number of Observations = 7197; \(R_w^2 = .794 \)
<table>
<thead>
<tr>
<th></th>
<th>Demand Equations</th>
<th>Price Reaction Equations</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Branded Share</td>
<td>Private Label Share</td>
<td>Branded Price</td>
</tr>
<tr>
<td>Branded Price</td>
<td>-0.0139 (3.801)**</td>
<td>0.0139 (3.801)**</td>
<td>0.1076 (6.222)**</td>
</tr>
<tr>
<td>Private Label Price</td>
<td>0.0133 (4.506)**</td>
<td>-0.0133 (-4.506)**</td>
<td>0.1308 (4.227)**</td>
</tr>
<tr>
<td>BR Price Reduction</td>
<td></td>
<td></td>
<td>-0.0713 (-3.682)**</td>
</tr>
<tr>
<td>PL Price Reduction</td>
<td></td>
<td></td>
<td>-0.1799 (-7.814)**</td>
</tr>
<tr>
<td>BR Volume/Unit</td>
<td></td>
<td></td>
<td>-0.8524 (-56.81)**</td>
</tr>
<tr>
<td>PL Volume/Unit</td>
<td></td>
<td></td>
<td>-0.8643 (-23.64)**</td>
</tr>
<tr>
<td>Branded Share</td>
<td>4.1124 (3.483)**</td>
<td>0.9672 (0.604)</td>
<td></td>
</tr>
<tr>
<td>Brand Herf.</td>
<td>-0.5916 (-2.314)*</td>
<td>0.2432 (0.725)</td>
<td></td>
</tr>
<tr>
<td>Grocery CR4</td>
<td>0.0253 (1.663)</td>
<td>0.0546 (2.792)**</td>
<td></td>
</tr>
<tr>
<td>Expenditure</td>
<td>0.0549 (19.22)**</td>
<td>-0.0549 (-19.22)**</td>
<td>-0.0845 (-1.038)</td>
</tr>
<tr>
<td>Br Feature</td>
<td>0.1077 (7.496)**</td>
<td>-0.1077 (-7.496)**</td>
<td>-0.6248 (-5.739)**</td>
</tr>
<tr>
<td>Br Display</td>
<td>0.1332 (14.02)**</td>
<td>-0.1332 (-14.02)**</td>
<td>-0.8538 (-7.323)**</td>
</tr>
<tr>
<td>PL Feature</td>
<td>-0.0372 (-4.298)**</td>
<td>0.0372 (4.298)**</td>
<td>0.1818 (3.785)**</td>
</tr>
<tr>
<td>PL Display</td>
<td>-0.0867 (-15.87)**</td>
<td>0.0867 (15.87)**</td>
<td>0.3482 (3.596)**</td>
</tr>
<tr>
<td>PL Distribution</td>
<td>-0.1902 (-37.97)**</td>
<td>0.1902 (37.97)**</td>
<td>0.7583 (3.847)**</td>
</tr>
<tr>
<td>Income</td>
<td>0.0185 (2.811)**</td>
<td>-0.0185 (-2.811)**</td>
<td>0.0208 (0.516)</td>
</tr>
<tr>
<td>Hispanic</td>
<td>0.0205 (0.297)</td>
<td>-0.0205 (-0.297)</td>
<td>-0.4730 (-2.498)*</td>
</tr>
<tr>
<td>Family Age</td>
<td>-0.0149 (-1.046)</td>
<td>0.0149 (1.046)</td>
<td>-0.0722 (-1.532)</td>
</tr>
</tbody>
</table>

** significant at the 1% level.
* significant at the 5% level.

Number of Observations = 7197; \(R_w^2 = .829 \)
Table 4 Estimated Demand Elasticities

<table>
<thead>
<tr>
<th></th>
<th>Price Model</th>
<th>Power and Promotion Model</th>
<th>Full Power and Promotion Model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Branded Quantity</td>
<td>Private Label Quantity</td>
<td>Branded Quantity</td>
</tr>
<tr>
<td>Branded Price</td>
<td>-1.0751</td>
<td>0.2716</td>
<td>-1.0726</td>
</tr>
<tr>
<td></td>
<td>(-190.943)**</td>
<td>(13.331)**</td>
<td>(-192.046)**</td>
</tr>
<tr>
<td>Private Label Price</td>
<td>-0.0073</td>
<td>-0.9737</td>
<td>0.0165</td>
</tr>
<tr>
<td></td>
<td>(-1.803)</td>
<td>(-66.749)**</td>
<td>(-73.800)**</td>
</tr>
<tr>
<td>Expenditure</td>
<td>1.0751</td>
<td>0.7282</td>
<td>1.0700</td>
</tr>
<tr>
<td></td>
<td>(286.449)**</td>
<td>(53.618)**</td>
<td>(293.763)**</td>
</tr>
<tr>
<td>BR Feature</td>
<td>0.0085</td>
<td>-0.0308</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(7.496)**</td>
<td>(-7.496)**</td>
<td></td>
</tr>
<tr>
<td>BR Display</td>
<td>0.0189</td>
<td>-0.0685</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(14.025)**</td>
<td>(-14.025)**</td>
<td></td>
</tr>
<tr>
<td>PL Feature</td>
<td>-0.0027</td>
<td>0.0097</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-4.298)**</td>
<td>(4.298)**</td>
<td></td>
</tr>
<tr>
<td>PL Display</td>
<td>-0.0122</td>
<td>0.0440</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-15.870)**</td>
<td>(15.870)**</td>
<td></td>
</tr>
<tr>
<td>PL Distribution</td>
<td>-0.1864</td>
<td>0.6745</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-37.021)</td>
<td>(37.020)</td>
<td></td>
</tr>
<tr>
<td>Income</td>
<td>0.603e-06</td>
<td>-0.218e-05</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2.732)**</td>
<td>(-2.732)**</td>
<td></td>
</tr>
<tr>
<td>Hispanic</td>
<td>0.0057</td>
<td>-0.0205</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.777)</td>
<td>(-0.777)</td>
<td></td>
</tr>
<tr>
<td>Family Age</td>
<td>-0.0001</td>
<td>0.0004</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-0.180)</td>
<td>(0.180)</td>
<td></td>
</tr>
</tbody>
</table>

** significant at the 1% level.
* significant at the 5% level